
Standalone Filter Wheel Driver Interface
The ability to handle standalone filter wheels (filter wheels not controlled through the camera, but
utilizing own communication and power lines and thus needing own drivers, independent on
camera drivers) was added to SIPS version 4. The Moravian Instruments SFW-XL series of
standalone filter wheels is an example of such devices.

This document describes the interface between SIPS and standalone filter wheel drivers. It can be
used for both implementing of a new standalone filter wheel driver for SIPS and also for using of
the driver DLLs to control Moravian Instruments SFW form other software packages.

Two driver DLLs are used to control all current Moravian Instruments SFW:

● 'sfw.dll' handles the SFW connected directly to the host computer through USB line.

● 'sfweth.dll' handles the SFW connected to the host computer over TCP/IP network. In such
case the Moravian Camera Ethernet Adapter device is necessary. Up to four Gx/Cx cameras
of arbitrary type and/or standalone filter wheels can be connected to this device using
standard USB lines on one side and the standard 1 Gbps Ethernet interface (compatible
with older 10/100 Mbps networks) can be attached on the other side. Because the TCP/IP
protocol can be routed, the distance between camera and filter wheel and the host PC is
virtually unlimited.

Please note SFW depends on the firmware version of the Camera Ethernet Adapter device.
Refer to the Camera Ethernet Adapter User's Guide for procedures to check and/or update
the device firmware.

Please note the USB connected SFW requires installation of the kernel driver on the particular
computer. The USB kernel drivers are identified by USB Vendor and Product identifiers. The
operating system takes care of these drivers and the user usually needs not to install them
manually (refer to the Installing and Using Drivers and Software manual for kernel driver
installation instructions, please). Of course, no kernel drivers are installed when the Moravian
Camera Ethernet Adapter is used to communicate with filter wheels.

Driver DLL Interface
SIPS drivers are Dynamic Link Libraries (DLLs) with specific set of exported functions. All exported
functions use standard “C” calling conventions, so they can be called from arbitrary software
package without problems with name decorations etc.

C calling conventions apply to 32-bit versions of supplied DLLs. There is only one universal calling
convention in 64-bit mode, so specifications of calling conventions in the source code are ignored.

Some functions are mandatory and the DLL must implement them to be accepted as a SIPS driver.
Other functions may be optional and the particular functionality are used only if the driver exports
(implements) these functions.

Driver API function description
Exported functions are grouped according to functionality. Individual function description follows
this list of all exported functions. Functions marked * are optional, SIPS does not require them to
be implemented (exported from the driver DLL).

Driver life-cycle functions:

 Enumerate
 Initialize
 Configure*
 Release
 RegisterNotifyHWND
Driver information functions:

 GetBoolean
 GetInteger
 GetString
Filter wheel functions:

 EnumerateFilters
 SetFilter
 ReinitFilterWheel*
Data types used in SFW driver Application Programming Interface:

typedef int INTEGER;
typedef unsigned int CARDINAL;
typedef unsigned char CHAR;
typedef unsigned char BOOLEAN;
typedef void * ADDRESS;

struct CSFW;
Driver API function description

void __cdecl Enumerate(
void (__cdecl *CallbackProc)(CARDINAL)

)

Mandatory function.

Enumerate allows discovering of all filter wheels currently connected to the host PC. Its argument
is a pointer to callback function 'CallbackProc' with single unsigned integer argument. This callback
function is called for each connected filter wheels and the filter wheel identifier is passed as an
argument. Application can then offer the user a list of all connected filter wheels to choose the one
with which the user wants to work etc.

If the application is designed to work with one filter wheel only or the filter wheel identifier is
known (for instance the application scans some .INI file where the identifier is defined),
'Enumerate' needs not to be called at all.

Please note the callback function uses the “C” calling conventions, as opposed to “stdcall”
conventions often used in the Windows OS.

CSFW* __cdecl Initialize(
CARDINAL Id

)

Mandatory function.

User-space driver is designed to handle multiple filter wheels at once. Driver distinguishes
individual cameras using handles to individual instances. Handle is defined as unsigned integer of
the size corresponding to the size of the address (32 bits or 64 bits). This allows the driver
implementation to allocate class/structure and return a pointer to it as a handle.

This handle is returned by the 'Initialize' function. It is necessary to pass the filter wheel identifier
to the Initialize (see the 'Enumerate' function description). If the 'Initialize' returns 0xFFFFFFFF
(INVALID_HANDLE_VALUE), the particular filter wheel cannot be used. It is either not connected or
is already used by some other application.

BOOLEAN __cdecl Configure(
CSFW *PSFW,
ADDRESS ParentHWND

)

Optional function.

If the driver requires configuration (for instance TCP/IP based filter wheel requires definition of IP
address), it should implement this function. This function can open a dialog box (and use the
ParentHWND passed from the user application).

This function can use called already enumerated Handle to re-configure existing instance of driver
or the Handle can be -1, in which case the configuration affects all instances of the particular
driver. User application should allow calling of 'Configure' function with Handle = -1 also in the case
'Enumerate' did not return any filter wheel.

SIPS always offer an empty line marked “unconfigured” for the drive exporting this function. After
the configuration finished, SIPS calls 'Enumerate' to get a fresh list of available cameras (e.g. from
new Moravian Camera Ethernet Adapter device).

void __cdecl Release(
CSFW *PSFW

)

Mandatory function.

When the filter wheel is no longer used, the handle must be released by the 'Release' call. No
other function (with the exception of 'Enumerate' and 'Initialize') may be called after the 'Release'
call.

void __cdecl RegisterNotifyHWND(
CSFW *PSFW,
ADDRESS NotifyHWND

)

Mandatory function.

The driver can notify the application the the filter wheel was plugged or unplugged. Notifications
are sent as Windows messages to the windows, which HWND was passed as and argument to the
'RegisterNotifyHWND' function. Notification messages are:

#define WM_FW_CONNECT 1039
#define WM_FW_DISCONNECT 1040

When the application is no longer interested in this notification, it can call 'RegisterNotifyHWND'
with NULL as a handle.

Calling Release automatically calls 'RegisterNotifyHWND' with NotifyHWND = NULL.

BOOLEAN __cdecl GetBoolean(
CSFW *PSFW,
CARDINAL Index,
BOOLEAN *Boolean

)

Mandatory function.

Function 'GetBoolean' returns a boolean value depending on the Index parameter. If the function
does not “understand” passed Index, it returns FALSE.

gbConnected = 0 TRUE if filter wheel currently connected
gbInitialized = 1 TRUE if filter wheel initialized (zero filter position found)
gbMicrometerFilterOffsets = 2 TRUE if filter focusing offsets are expressed in micrometers
gbpConfigured = 127 TRUE if camera is configured

BOOLEAN __cdecl GetInteger(
CSFW *PSFW,
CARDINAL Index,
INTEGER *Num

)

Mandatory function.

Function 'GetInteger' returns integer value depending on the Index parameter. If the function does
not “understand” passed Index, it returns FALSE.

giVersion1 = 0 Filter wheel drive major version
giVersion2 = 1 Filter wheel drive minor version
giVersion3 = 2 Filter wheel drive build version
giVersion4 = 3 Filter wheel drive release version
giFilterWheelId = 4 Unique identifier of the standalone filter wheel
giFilters = 5 Number of filters available

BOOLEAN __cdecl GetString(
CSFW *PSFW,
CARDINAL Index,
CARDINAL String_HIGH,
CHAR *String

)

Mandatory function.

Function 'GetString' returns string value depending on the Index parameter. If the function does
not “understand” passed Index, it returns FALSE.

The string is copied to the buffer pointed by the String parameter. The function checks the
maximum buffer size not to cause buffer overrun. The highest character index (index starts with 0)
of the buffer must be passed as String_HIGH parameter. If the buffer is longer than the passed
string, terminating zero character is also copied.

gsFWDescription = 0 Filter wheel description
gsManufacturer = 1 Manufacturer name
gsSerialNumber = 2 Filter wheel serial number

BOOLEAN __cdecl EnumerateFilters(
CSFW *PSFW,
CARDINAL Index,
CARDINAL Description_HIGH,
CHAR *Description,
CARDINAL *Color,
INTEGER *Offset

);

Mandatory function.

Enumerates all filters provided by the filter wheel. This enumeration does not use any callback, but
the caller passes index beginning with 0 and repeats the call with incremented index until the call
returns FALSE. Description string is passed similarly to GetString call. Color parameter hints the
Windows color, which can be used to draw the filter name in the application. The 'Offset'
parameter indicates the focuser shift when the particular filter is selected.

Units of the 'Offset' can be micrometers or arbitrary focuser specific units (steps). If the units used
are micrometers, driver should return TRUE from GetBoolean(gbMicrometerFilterOffsets, …) call.

BOOLEAN __cdecl SetFilter(
CSFW *PSFW,
CARDINAL FilterIndex

);

Mandatory function.

Sets the required filter.

BOOLEAN __cdecl ReinitFilterWheel(
CSFW *PSFW

);

Optional function.

The filter wheel performs the initialization, during which the zero filter position is found and set.

Document updates
2024-07-09: Version 1.0 of driver DLLs released.

	Standalone Filter Wheel Driver Interface
	Driver DLL Interface
	Driver API function description
	Driver API function description
	Document updates

